已知抛物线方程为x2=12y,直线l过其焦点,交抛物线于A、B两点,|AB|=16.
1)求抛物线的焦点坐标和准线方程;
2)求A、B中点的纵坐标.
1)由抛物线方程为x2=12y,对比标准方程x2=2py(p>0)可得2P=12,P=6,
∴焦点F(0,3),准线方程为:y=-3…(4分)
2)(解法一)设直线l的斜率为k,设A(x1,y1),B(x2,y2),A、B的中点M(x0,y0).
则直线l的方程:y=kx+3,与抛物线联立方程组得:…(5分)
,…(7分)y=kx+3 x2=12y
消去y,整理得:x2-12kx-36=0…(9分)
方程中,△=(-12k)2-4(-36)=144k2+144>0,有两个不同的根;
由根与系数的关系得:x1+x2=12k,x1x2=-36…(10分)
又|AB|=16,即|AB|=
=16,…(11分)(1+k2)((x1+x2)-4x1x2)
代入,整理得:(1+k2)2=
,16 9
∴k2=
…(12分)1 3
∵M(x0,y0)在直线l上,
∴y0=kx0+3,y0=k•
+3=6k2+3…(13分)x1+x2 2
∴y0=5,即A、B中点的纵坐标为5…(14分)
(解法二):设直线l的斜率为k,设A(x1,y1),B(x2,y2),A、B的中点M(x0,y0),
过A、B分别作准线的垂线,垂足分别为P、Q,焦点F在弦AB上,…(5分)
|FA|+|FB|=|AB|=16,…(6分)
由抛物线定义,|AP|=|AF|,|BQ|=|BF|,…(8分)
而|AP|=y1+
=y1+3,…(9分)p 2
|BP|=y2+
=y2+3,…(10分p 2
∴y1+3+y2+3=16,y1+y2=10,…(12分)
y0=
=5…(13分)y1+y2 2
即A、B中点的纵坐标为5…(14分)