已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1 (n≥2),求{cn}的通项公式.
(1)证明见解析(2)cn= ()n
(1)证明 由a1+S1=1及a1=S1得a1=.
又由an+Sn=n及an+1+Sn+1=n+1得
an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn.
∴数列{bn}是以b1=a1-1=-为首项,
为公比的等比数列. 6分
(2)解 方法一 由(1)知2an+1=an+1.
∴2an=an-1+1 (n≥2), 8分
∴2an+1-2an=an-an-1,
∴2cn+1=cn (n≥2).
又c1=a1=,a2+a1+a2=2,∴a2=
.
∴c2=-
=
,即c2=
c1.
∴数列{cn}是首项为,公比为
的等比数列. 12分
∴cn=·(
)n-1=(
)n. 14分
方法二 由(1)bn=(-)·(
)n-1=-(
)n.
∴an=-()n+1.
∴cn=-()
+1-
=-
=
=(n≥2). 12分
又c1=a1=也适合上式,∴cn=
. 14分