问题 解答题
已知AB是抛物线y2=ax(a>0)焦点弦,且A(x1,y1),B(x2,y2),点F是抛物线的焦点,则有
1
|AF|
+
1
|BF|
=______.
答案

由题意利用抛物线的定义可得|AF|=x1+

a
4
,|BF|=x2+
a
4

把AB的方程y-0=k(x-

a
4
)代入抛物线y2=ax(a>0)可得 k2x2-
3a
2
x-
k2•a2
16
=0,∴x1•x2=
a2
16

1
|AF|
+
1
|BF|
=
1
x1+
a
4
+
1
x2+
a
4
=
x1+x2+
a
2
(x1+
a
4
)(x2+
a
4
)
=
x1+x2+
a
2
x1• x2+
a
4
(x1+x2)+
a2
16
=
x1+x2+
a
2
a
4
(x1+x2)+
a2
8

=

x1+x2+
a
2
a
4
(x1+x2+
a
2
)
=
4
a

故答案为

4
a

选择题
单项选择题