问题
解答题
已知AB是抛物线y2=ax(a>0)焦点弦,且A(x1,y1),B(x2,y2),点F是抛物线的焦点,则有
|
答案
由题意利用抛物线的定义可得|AF|=x1+
,|BF|=x2+a 4
.a 4
把AB的方程y-0=k(x-
)代入抛物线y2=ax(a>0)可得 k2x2-a 4
x-3a 2
=0,∴x1•x2=k2•a2 16
.a2 16
∴
+1 |AF|
=1 |BF|
+1 x1+ a 4
=1 x2+ a 4
=x1+x2+ a 2 (x1+
)(x2+a 4
)a 4
=x1+x2+ a 2 x1• x2+
(x1+x2)+a 4 a2 16 x1+x2+ a 2
(x1+x2)+a 4 a2 8
=
=x1+x2+ a 2
(x1+x2+a 4
)a 2
,4 a
故答案为
.4 a