问题
解答题
已知a∈R,函数f(x)=x|x-a|,
(Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]的最小值。
答案
解:(Ⅰ)当a=2时,,
由图象可知,单调递增区间为(-∝,1],[2,+∝)。
(Ⅱ)因为a>2,x∈[1,2]时,
所以,f(x)=x(a-x)=-x2+ax=,
当,即2<a≤3时,
;
当,即a>3时,
;
∴。