问题
填空题
已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交抛物线C与A、B两点,则|AB|=______.
答案
抛物线焦点为(1,0),且斜率为1,
则直线方程为y=x-1,代入抛物线方程y2=4x得
x2-6x+1=0,设A(x1,y1),B(x2,y2)
∴x1+x2=6
根据抛物线的定义可知|AB|=x1+
+x2+p 2
=x1+x2+p=6+2=8p 2
故答案为:8
已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交抛物线C与A、B两点,则|AB|=______.
抛物线焦点为(1,0),且斜率为1,
则直线方程为y=x-1,代入抛物线方程y2=4x得
x2-6x+1=0,设A(x1,y1),B(x2,y2)
∴x1+x2=6
根据抛物线的定义可知|AB|=x1+
+x2+p 2
=x1+x2+p=6+2=8p 2
故答案为:8