问题
解答题
定义在实数R上的函数y=f(x)是偶函数,当x≥0时,f(x)=-4x2+8x-3。
(Ⅰ)求f(x)在R上的表达式;
(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明)。
答案
解:(Ⅰ)设x<0,则-x>0,,
∵f(x)是偶函数,
∴f(-x)=f(x),
∴x<0时,,
所以,。
(Ⅱ)y=f(x)开口向下,
所以,y=f(x)有最大值f(1)=f(-1)=1 ,
函数y=f(x)的单调递增区间是(-∞,-1]和[0,1],单调递减区间是 [-1,0]和[1,+∞)。