问题
填空题
若方程|x2+ax|=4只有3个不相等的实数根,则a=______.
答案
∵|x2+ax|=4,
∴x2+ax-4=0①或x2+ax+4=0②,
方程①②不可能有相同的根,
而原方程有3个不相等的实数根,
∴方程①②中有一个有等根,
而△1=a2+16>0,
∴△2=a2-16=0,
∴a=±4,
故答案为±4.
若方程|x2+ax|=4只有3个不相等的实数根,则a=______.
∵|x2+ax|=4,
∴x2+ax-4=0①或x2+ax+4=0②,
方程①②不可能有相同的根,
而原方程有3个不相等的实数根,
∴方程①②中有一个有等根,
而△1=a2+16>0,
∴△2=a2-16=0,
∴a=±4,
故答案为±4.