问题
填空题
抛物线y2=4x的焦点弦被焦点分成m和n两部分,则
|
答案
∵抛物线y2=4x的焦点F(1,0),假设过F点的直线l的斜率存在,设为k,
则l的方程为:y=k(x-1),直线方程与抛物线方程联立消去y得:
k2x2-(2k2+4)x+k2=0,
设直线l与抛物线y2=4x的两交点为A(x1,y1)、B(x2,y2),
则x1、x2为方程k2x2-(2k2+4)x+k2=0的两根,
∴x1+x2=2+
,x1•x2=1.4 k2
又由抛物线定义可得:
m+n=x1+x2+p=2+
+2=4+4 k2
,4 k2
m•n=(x1+1)(x2+1)=x1•x2+(x1+x2)+1=4+
.4 k2
∴
+1 m
=1 n
=1.m+n mn
②若k不存在,则AB方程为x=1,m=n=2,显然符合
+1 m
=1.1 n
综上所述:
+1 m
=1.1 n
故答案为:1.