问题 解答题
已知抛物线x2=2py(p>0),过焦点F的动直线l交抛物线于A,B两点,抛物线在A,B两点处的切线相交于点Q.
(Ⅰ)求
OA
OB
的值;
(Ⅱ)求点Q的纵坐标;
(Ⅲ)证明:|
QF
|2=|
AF
|•|
BF
|
答案

(Ⅰ)∵F(0,

p
2
),

∴设直线l的方程为y=kx+

p
2

y=kx+
p
2
x2=2py
可得x2-2pkx-p2=0.(2分)

设A(x1,y1)、B(x2,y2),

则x1+x2=2pk,x1x2=-p2.(3分)

y1y2=(kx1+

p
2
)•(kx2+
p
2
)=k2x1x2+
kp
2
(x1+x2)+
p2
4

=-k2p2+k2p2+

p2
4
=
p2
4
(4分)

OA
OB
=x1x2+y1y2=-
3
4
p2.(5分)

(Ⅱ)由x2=2py,可得y=

x2
2p

y′=

x
p

∴抛物线在A、B两点处的切线的斜率分别为

x1
p
x2
p

∴在点A处的切线方程为y-y1=

x1
p
(x-x1),即y=
x1
p
x-
x12
2p
.(7分)

同理在点处B的切线方程为y=

x2
p
x-
x22
2p

解方程组

y=
x1
p
x-
x12
2p
y=
x2
p
x-
x22
2p

可得

x=pk
y=-
p
2
.

即点Q的纵坐标为-

p
2
.(9分)

(Ⅲ)证明:由(Ⅱ)可知,Q(pk,-

p
2
),

|

QF
|2=(0-pk)2+(
p
2
+
p
2
)2=(1+k2)p2,(11分)

y1+y2=kx1+

p
2
+kx2+
p
2
=k(x1+x2)+p=p(1+2k2),

|

AF
|•|
BF
|=(y1+
p
2
)(y2+
p
2
)=y1y2+
p
2
(y1+y2)+
p2
4

=

p2
4
+
p
2
•(1+2k2)p+
p2
4

=(1+k2)p2

|

QF
|2=|
AF
|•|
BF
|.(13分)

选择题
选择题