已知抛物线x2=2py(p>0),过焦点F的动直线l交抛物线于A,B两点,抛物线在A,B两点处的切线相交于点Q. (Ⅰ)求
(Ⅱ)求点Q的纵坐标; (Ⅲ)证明:|
|
(Ⅰ)∵F(0,
),p 2
∴设直线l的方程为y=kx+
.p 2
由
可得x2-2pkx-p2=0.(2分)y=kx+ p 2 x2=2py
设A(x1,y1)、B(x2,y2),
则x1+x2=2pk,x1x2=-p2.(3分)
y1•y2=(kx1+
)•(kx2+p 2
)=k2x1x2+p 2
(x1+x2)+kp 2 p2 4
=-k2p2+k2p2+
=p2 4
(4分)p2 4
∴
•OA
=x1x2+y1y2=-OB
p2.(5分)3 4
(Ⅱ)由x2=2py,可得y=
,x2 2p
∴y′=
.x p
∴抛物线在A、B两点处的切线的斜率分别为
,x1 p
.x2 p
∴在点A处的切线方程为y-y1=
(x-x1),即y=x1 p
x-x1 p
.(7分)x12 2p
同理在点处B的切线方程为y=
x-x2 p
.x22 2p
解方程组y=
x-x1 p x12 2p y=
x-x2 p x22 2p
可得x=pk y=-
.p 2
即点Q的纵坐标为-
.(9分)p 2
(Ⅲ)证明:由(Ⅱ)可知,Q(pk,-
),p 2
∴|
|2=(0-pk)2+(QF
+p 2
)2=(1+k2)p2,(11分)p 2
又y1+y2=kx1+
+kx2+p 2
=k(x1+x2)+p=p(1+2k2),p 2
∴|
|•|AF
|=(y1+BF
)(y2+p 2
)=y1y2+p 2
(y1+y2)+p 2 p2 4
=
+p2 4
•(1+2k2)p+p 2 p2 4
=(1+k2)p2.
∴|
|2=|QF
|•|AF
|.(13分)BF