如图所示为某钢铁厂的钢轨传送装置,斜坡长为L=20m,高为h=2m,斜坡上紧排着一排滚筒.长为l=8m、质量为m=1×103 kg的钢轨ab放在滚筒上,钢轨与滚筒间的动摩擦因数为μ=0.3,工作时由电动机带动所有滚筒顺时针匀速转动,使钢轨沿斜坡向上移动,滚筒边缘的线速度均为v=4m/s.假设关闭电动机的瞬时所有滚筒立即停止转动,钢轨对滚筒的总压力近似等于钢轨的重力.取当地的重力加速度g=10m/s2.试求:
(1)钢轨从坡底(如图示位置)从静止开始运动,直到b端到达坡顶所需的最短时间;
(2)钢轨从坡底(如图示位置)从静止开始运动,直到b端到达坡顶的过程中电动机至少要工作多长时间?
![](https://img.ixiawen.com/uploadfile/2017/0430/20170430013003542.png)
(1)分析可知,欲使b端到达坡顶所需要的时间最短,需要电动机一直工作,则钢轨先做匀加速直线运动,当它的速度等于滚筒边缘的线速度后,做匀速直线运动.钢轨开始受到的滑动摩擦力为:
f1=μmg=3×103 N
根据牛顿第二定律 f1-mg sinα=ma1
解得:a1=2 m/s2
钢轨开始做匀加速运动的时间为 t1=
=2 sv a1
位移为 s1=
a1t12=4 m1 2
钢轨做匀速直线运动的位移为 s2=L-l-s1=8 m
做匀速直线运动的时间为 t2=
=2 ss2 v
所需的最短时间为 t=t1+t2=4 s
(2)欲使电动机工作的时间最短,钢轨的最后一段运动要关闭电动机,钢轨匀减速上升,b端到达坡顶时速度刚好为零.
根据牛顿第二定律 f1+mg sinα=ma2
匀减速运动的加速度大小为 a2=4 m/s2
历时 t3=
=1sv a2
位移为s3=vt3-
a2t32=2 m1 2
电动机至少要工作的时间为t4=t1+
=3.5sL-l-S1-S3 v
答:(1)钢轨从坡底从静止开始运动,直到b端到达坡顶所需的最短时间为4s;
(2)钢轨从坡底从静止开始运动,直到b端到达坡顶的过程中电动机至少要工作3.5s时间?