问题
填空题
已知关于x的方程(a+2)x2-3x+1=0,如果从-2,-1,0,1,2五个数中任取一个数作为此方程的a,那么所得方程有实数根的概率是.______.
答案
把-2,-1,0,1,2依次代入方程得:-3x+1=0,x2-3x+1=0,2x2-3x+1=0,3x2-3x+1=0,4x2-3x+1=0,
(1)是一元一次方程,一定有实数根;
(2)△=9-4=5>0,方程有两个实数根;
(3)△=9-8=1>0,方程有两个实数根;
(4)△=9-12=-3<0,方程没有实数根;
(5)△=9-16=-7<0,方程没有实数根.
共有5种可能,方程有实数根的情况有3种,所以方程有实数根的概率为
.3 5
故答案为:
.3 5