(Ⅰ)∵点M在直线x=上,设M(,yM).又=,
即=(-x1,yM-y1),=(x2-,y2-yM),
∴x1+x2=1.(2分)
①当x1=时,x2=,y1+y2=f(x1)+f(x2)=-1-1=-2;
②当x1≠时,x2≠,
y1+y2=+=2x1(1-2x2)+2x2(1-2x1) |
(1-2x1)(1-2x2) |
=2(x1+x2)-8x1x2 |
1-2(x1+x2)+4x1x2 |
==-2;
综合①②得,y1+y2=-2.(5分)
(Ⅱ)由(Ⅰ)知,当x1+x2=1时,y1+y2=-2.
∴f()+f()=-2,k=1,2,3,,n-1.(7分)
n≥2时,Sn=f()+f()+f()++f(),①
Sn=f()+f()+f()++f(),②
①+②得,2Sn=-2(n-1),则Sn=1-n.
n=1时,S1=0满足Sn=1-n.
∴Sn=1-n.(10分)
(Ⅲ)an=2Sn=21-n,Tn=1+++()n-1=2-.<⇔2(Tm-c)-(Tm+1-c) |
2(Tm+1-c) |
<0⇔<0.Tm+1=2-,2Tm-Tm+1=4--2+=2-,
∴≤2-<c<2-<2,c、m为正整数,
∴c=1,
当c=1时,,
∴1<2m<3,
∴m=1.(14分)