问题
解答题
设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有 f(x+y)=f(x)f(y) (Ⅰ)求f(0),判断并证明函数f(x)的单调性; (Ⅱ)数列{an}满足a1=f(0),且f(an+1)=
①求{an}通项公式. ②当a>1时,不等式
|
答案
(Ⅰ)x,y∈R,f(x+y)=f(x)•f(y),x<0时,f(x)>1
令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1
若x>0,则f(x-x)=f(0)=f(x)f(-x)
故f(x)=
∈(0,1)1 f(-x)
故x∈Rf(x)>0
任取x1<x2f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1)
∵x2-x1>0∴0<f(x2-x1)<1
∴f(x2)<f(x1)
故f(x)在R上减函数
(Ⅱ)①a1=f(0)=1,f(an+1)=
=f(2+an)1 f(-2-an)
由f(x)单调性知,an+1=an+2故{an}等差数列
∴an=2n-1
②bn=
+1 an+1
++1 an+2
,则bn+1=1 a2n
+1 an+2
++1 an+3
bn+1-bn=1 a2n+2
+1 a2n+1
-1 a2n+2
=1 an+1
+1 4n+1
-1 4n+3 1 2n+1
=
>0,{bn}是递增数列1 (4n+1)(4n+3)(2n+1)
当n≥2时,(bn)min=b2=
+1 a3
=1 a4
+1 5
=1 7 12 35
∴
>12 35
(loga+1x-logax+1)12 35
即loga+1x-logax+1<1⇒loga+1x<logax
而a>1,
∴x>1
故x的取值范围:(1,+∞)