问题 解答题
设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有
f(x+y)=f(x)f(y)
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)

①求{an}通项公式.
②当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(loga+1x-logax+1)
对不小于2的正整数恒成立,求x的取值范围.
答案

(Ⅰ)x,y∈R,f(x+y)=f(x)•f(y),x<0时,f(x)>1

令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1

∴f(0)=1

若x>0,则f(x-x)=f(0)=f(x)f(-x)

f(x)=

1
f(-x)
∈(0,1)

故x∈Rf(x)>0

任取x1<x2f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1

∵x2-x1>0∴0<f(x2-x1)<1

∴f(x2)<f(x1

故f(x)在R上减函数

(Ⅱ)①a1=f(0)=1,f(an+1)=

1
f(-2-an)
=f(2+an)

由f(x)单调性知,an+1=an+2故{an}等差数列

∴an=2n-1

bn=

1
an+1
+
1
an+2
++
1
a2n
,则bn+1=
1
an+2
+
1
an+3
++
1
a2n+2
bn+1-bn=
1
a2n+1
+
1
a2n+2
-
1
an+1
=
1
4n+1
+
1
4n+3
-
1
2n+1

=

1
(4n+1)(4n+3)(2n+1)
>0,{bn}是递增数列

当n≥2时,(bn)min=b2=

1
a3
+
1
a4
=
1
5
+
1
7
=
12
35

12
35
12
35
(loga+1x-logax+1)

即loga+1x-logax+1<1⇒loga+1x<logax

而a>1,

∴x>1

故x的取值范围:(1,+∞)

单项选择题
问答题 简答题