问题 解答题
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=-
1
2
(an-3)(n∈N*)
,求f(a1)+f(a2)+…+f(an).
答案

(Ⅰ)令x1=x2=0,

由③知f(0)=2f(0)-2⇒f(0)=2;

(Ⅱ)任取x1x2∈[0,1],且x1<x2

则0<x2-x1≤1,∴f(x2-x1)≥2

∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1

=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0

∴f(x2)≥f(x1),则f(x)≤f(1)=3.

∴f(x)的最大值为3;

(Ⅲ)由Sn=-

1
2
(an-3)知,

n=1时,a1=1;当n≥2时,an=-

1
2
an+
1
2
an-1

an=

1
3
an-1(n≥2),又a1=1,∴an=
1
3n-1

f(an)=f(

1
3n-1
)=f(
1
3n
+
1
3n
+
1
3n
)=f(
2
3n
)+f(
1
3n
)-2

=3f(

1
3n
)-4=3f(an+1)-4

f(an+1)=

1
3
f(an)+
4
3

f(an+1)-2=

1
3
(f(an)-2)

又f(a1)-2=1∴f(an)-2=(

1
3
)n-1,∴f(an)=(
1
3
)n-1+2

f(a1)+f(a2)++f(an)=2n+

3
2
-
1
3n-1
.

选择题
单项选择题 A3/A4型题