问题
解答题
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通项公式.
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
答案
(1)an=2n-1(n∈N*) bn=2n-1(n∈N*).
(2)Tn=(2n-3)·2n+3(n∈N*)
(1)因为{an}是等差数列,且a3=5,a7=13,设公差为d.
所以解得
所以an=1+2(n-1)=2n-1(n∈N*).
在{bn}中,因为当n=1时,b1=2b1-1,所以b1=1.
当n≥2时,由Sn=2bn-1及Sn-1=2bn-1-1可得bn=2bn-2bn-1,所以bn=2bn-1.
所以{bn}是首项为1公比为2的等比数列,
所以bn=2n-1(n∈N*).
(2)cn=anbn=(2n-1)·2n-1,
Tn=1+3×2+5×22+…+(2n-1)×2n-1 ①
2Tn=1×2+3×22+5×23+…+(2n-3)·2n-1+(2n-1)·2n②
①-②得
-Tn=1+2×2+2×22+…+2×2n-1-(2n-1)·2n
=1+2×-(2n-1)·2n
=1+4(2n-1-1)-(2n-1)·2n=-3-(2n-3)·2n,
所以Tn=(2n-3)·2n+3(n∈N*).