问题
选择题
已知f(x)为偶函数,且f(1+x)=f(3-x),当-2≤x≤0时,f(x)=3x,若n∈N*,an=f(n),则a2011=( )
|
答案
∵f(1+x)=f(3-x)
∴f(x)=f(4-x)
又∵f(x)为偶函数,
∴f(x)=f(-x)
∴f(-x)=f(4-x).即函数的周期T=4.
∴a2011=a502+3=a3=f(3)=f(-1)=3-1=1 3
故选:D.
已知f(x)为偶函数,且f(1+x)=f(3-x),当-2≤x≤0时,f(x)=3x,若n∈N*,an=f(n),则a2011=( )
|
∵f(1+x)=f(3-x)
∴f(x)=f(4-x)
又∵f(x)为偶函数,
∴f(x)=f(-x)
∴f(-x)=f(4-x).即函数的周期T=4.
∴a2011=a502+3=a3=f(3)=f(-1)=3-1=1 3
故选:D.