问题
解答题
已知数列{an}的前n项和Sn=n2.
(I)求数列{an}的通项公式;
(II)设an=2nbn,求数列{bn}的前n项和Tn.
答案
(I)当n=1时,a1=S1=1,
∴an=2n-1.当n≥2时,an=Sn-Sn-1=h2-(n-1)2=2n-1, 且对n=1成成立.
(II)由an=2nbn=2n-1,得bn=
,Tn=2n-1 2n
+1 2
+3 22
+…+5 23
,①2Tn=1+2n-1 2n
+3 2
+…+5 22
,②2n-1 2n-1
②-①,得Tn=1+1+
+1 2
+…+1 22
-1 2n-2
=3-2n-1 2n
.2n+3 2n