问题 填空题

若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有______个.

答案

抛物线y2=4x的参数p=2,所以F(1,0),准线l:x=-1,即x+1=0,

设经过点M(4,4)、F(1,0),且与直线l相切的圆的圆心为Q(a,b),

则半径为Q到l的距离为即1+a,

∴圆的方程为(x-a)2+(y-b)2=(1+a)2

将M、F的坐标代入,(4-a)2+(4-b)2=(1+a)2①,

(1-a)2+b2=(1+a)2②,

由①②得:b2-8b+1=10a,③b2=4a,④

由③④得:3b2+16b-2=0,

解得b1=

70
-8
3
,b2=
70
+8
3

将b1,b2分别代入④得:a1=

67-8
70
18
,a2=
67+8
70
18

故圆的个数为2个.

故答案为:2.

选择题
单项选择题 A1型题