定义在R上的函数f (x)满足:如果对任意x1,x2∈R,都有f(
(1)当a=1时,试判断函数f (x)是否为凹函数,并说明理由; (2)如果函数f (x)对任意的x∈[0,1]时,都有|f(x)|≤1,试求实数a的范围. |
(1)a=1时,函数f(x)是凹函数,
此时f(x)=x2+x,f(
)=(x1+x2 2
)2+(x1+x2 2
),x1+x2 2
[f(x1)+f(x2)]=1 2
[x12+x1+x22+x2],1 2
作差得到:f(
)2-x1+x2 2
[f(x1)+f(x2)]1 2
=(
)2+(x1+x2 2
)-x1+x2 2
(x12+x22)-1 2
(x1+x2)1 2
=
-
+2x1x2+x 21 x 22 4 2
+2x 21 x 22 4
=
=-(-
+2x1x2-x 21 x 22 4
)2≤0,x1+x2 2
即有f(
)≤x1+x2 2
[f(x1)+f(x2)],1 2
故知函数f(x)=x2+x为凹函数;
(2)由-1≤f(x)=ax2+x≤1,
则有
⇒ax2+x≥-1 ax2+x≤1 ax2≥-x-1 ax2≤-x+1.
i)若x=0时,则a∈R恒成立,
ii)若x∈(0,1]时,有
⇒a≥-
-1 x 1 x2 a≤-
+1 x 1 x2 a≥-(
+1 x
)2+1 2
(1)1 4 a≤(
-1 x
)2-1 2
. (2)1 4
∵0<x≤1⇒
≥1.1 x
∴当
=1时,a≥-(1+1 x
)2+1 2
=-2a≤(1-1 4
)2-1 2
=01 4
所以0≥a≥-2.