问题
解答题
求证:当k≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.
答案
证明:∵k≠0,
∴方程kx2-2(k-1)x+k-2=0为一元二次方程,
∴△=4(k-1)2-4×k×(k-2)
=4k2-8k+4-4k2+8k
=4>0,
∴当k≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.
求证:当k≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.
证明:∵k≠0,
∴方程kx2-2(k-1)x+k-2=0为一元二次方程,
∴△=4(k-1)2-4×k×(k-2)
=4k2-8k+4-4k2+8k
=4>0,
∴当k≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.