问题
解答题
等差数列中{an}中,a10=30,a20=50;
(1)求a1,d;
(2)求通项公式an;
(3)若Sn=242,求n.
答案
(1)由等差数列的通项公式可得,a1+9d=30 a1+19d=50
∴a1=12,d=2
(2)由(1)可得,an=2n+10
(3)Sn=
×n=24212+2n+10 2
∴n=11
等差数列中{an}中,a10=30,a20=50;
(1)求a1,d;
(2)求通项公式an;
(3)若Sn=242,求n.
(1)由等差数列的通项公式可得,a1+9d=30 a1+19d=50
∴a1=12,d=2
(2)由(1)可得,an=2n+10
(3)Sn=
×n=24212+2n+10 2
∴n=11