问题
解答题
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列. (1)求数列{an}的通项公式; (2)设数列{
|
答案
(1)∵数列{an}是等差数列,
∴an=a1+(n-1)d,Sn=na1+
d.…(1分)n(n-1) 2
依题意,有
即S5=70 a72=a2a22
…(3分)5a1+10d=70 (a1+6d)2=(a1+d)(a1+21d).
解得a1=6,d=4.…(5分)
∴数列{an}的通项公式为an=4n+2(n∈N*).…(6分)
(2)证明:由(1)可得Sn=2n2+4n.…(7分)
∴
=1 Sn
=1 2n2+4n
=1 2n(n+2)
(1 4
-1 n
).…(8分)1 n+2
∴Tn=
+1 S1
+1 S2
+…+1 S3
+1 Sn-1 1 Sn
=
[(1-1 4
)+(1 3
-1 2
)+(1 4
-1 3
)+…+(1 5
-1 n-1
)+(1 n+1
-1 n
)]…(9分)1 n+2
=
(1+1 4
-1 2
-1 n+1
)1 n+2
=
-3 8
(1 4
+1 n+1
).…(10分)1 n+2
∵Tn-
=-3 8
(1 4
+1 n+1
)<0,1 n+2
∴Tn<
.…(11分)3 8
∵Tn+1-Tn=
(1 4
-1 n+1
)>0,所以数列{Tn}是递增数列.…(12分)1 n+3
∴Tn≥T1=
.…(13分)1 6
∴
≤Tn<1 6
.…(14分)3 8