已知抛物线C1:x2=2py(p>0)上纵坐标为p的点到其焦点的距离为3. (Ⅰ)求抛物线C1的方程; (Ⅱ)过点P(0,-2)的直线交抛物线C1于A,B两点,设抛物线C1在点A,B处的切线交于点M, (ⅰ)求点M的轨迹C2的方程; (ⅱ)若点Q为(ⅰ)中曲线C2上的动点,当直线AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在时,试判断
|
(Ⅰ)由题意得p+
=3,则p=2,…(3分)p 2
所以抛物线C1的方程为x2=4y. …(5分)
(Ⅱ)(ⅰ)设过点P(0,-2)的直线方程为y=kx-2,A(x1,y1),B(x2,y2),
由
得x2-4kx+8=0.y=kx-2 x2=4y
由△>0,得k<-
或k>2
,x1+x2=4k,x1x2=8.…(7分)2
抛物线C1在点A,B处的切线方程分别为y-y1=
(x-x1),y-y2=x1 2
(x-x2),x2 2
即y=
x-x1 2
,y=x 21 4
x-x2 2
,x 22 4
由
得y=
x-x1 2 x 21 4 y=
x-x2 2 x 22 4 x=
=2kx1+x2 2 y=
=2.x1x2 4
所以点M的轨迹C2的方程为y=2 (x<-2
或x>22
).…(10分)2
(ⅱ)设Q(m,2)(|m|>2
),2
则kPQ=
,kAQ=4 m
,kBQ=y1-2 x1-m
.…(11分)y2-2 x2-m
所以
+kPQ kAQ
=kPQ kBQ
(4 m
+1 kAQ
)=1 kBQ
(4 m
+x1-m y1-2
)…(12分)x2-m y2-2
=
[4 m
]=(x1-m)(y2-2)+(x2-m)(y1-2) (y1-2)(y2-2)
[4 m
]2kx1x2-(mk+4)(x1+x2)+8m k2x1x2-4k(x1+x2)+16
=
[4 m
]=16k-(mk+4)•4k+8m 8k2-4k•4k+16
[4 m
]=8m-4mk2 16-8k2
[4 m
]=2,4m(2-k2) 8(2-k2)
即
+kPQ kAQ
为常数2. …(15分)kPQ kBQ