问题
填空题
设R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),且f'(1)=2,则方程f'(x)=0的根为______.
答案
由于R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),
故两边对x求导,f'(x+y)=f'(x)+4y
x=1带入,f'(1+y)=f'(1)+4y=2+4y
令1+y=t,则y=t-1;
带入上式,f'(t)=2+4(t-1)=4t-2
令f'(t)=4t-2=0
解得t=1/2
故答案为 1 2