等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
(1)求an与bn. (2)证明:
|
(I)由已知可得
.q+3+a2=12 q= 3+a2 q
解得,q=3或q=-4(舍去),a2=6
∴an=3+(n-1)3=3n
∴bn=3n-1
(2)证明:∵Sn=
∴n(3+3n) 2
=1 Sn
=2 n(3+3n)
(2 3
-1 n
)1 n+1
∴
+1 S1
+…+1 S2 1 Sn
=
(1-2 3
+1 2
-1 2
+1 3
-1 3
+…+1 4
-1 n
)1 n+1
=
(1-2 3
)1 n+1
∵n≥1∴0<
≤1 n+1
∴1 2
≤1 3
(1-2 3
)<1 n+1 2 3
故
≤1 3
+1 S1
+…+1 S2
<1 Sn
.2 3