问题 解答题
等差数列{an}中,a7=4,a19=2a9
(I)求{an}的通项公式;
(II)设bn=
1
nan
,求数列{bn}的前n项和Sn
答案

(I)设等差数列{an}的公差为d

∵a7=4,a19=2a9

a1+6d=4
a1+18d=2(a1+8d)

解得,a1=1,d=

1
2

an=1+

1
2
(n-1)=
1+n
2

(II)∵bn=

1
nan
=
2
n(n+1)
=
2
n
-
2
n+1

∴sn=2(1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=2(1-

1
n+1
)=
2n
n+1

选择题
多项选择题