问题
填空题
已知正项数列{an},其前n项和Sn满足6Sn=an2+3an+2,且a1,a3,a11成等比数列,则数列{an}的通项为______.
答案
∵6Sn=an2+3an+2,①
∴6Sn+1=an+12+3an+1+2,②
②-①得到6an+1=an+12+3an+1-an2-3an
∴3(an+1+an)=(an+1-an)(an+1+an)
∵正项数列{an},
∴an+1-an=3或an+1+an=0
∴数列是一个公差为3的等差数列,
∵6a1=a12+3a1+2
∴a1=1或2,
∵a1,a3,a11成等比数列
∴当a1=1时,1,7,31不成等比数列,
首项等于2时,2,8,32成等比数列,
∴首项等于2,
∴数列的通项是an=3n-1
故答案为:an=3n-1