问题
解答题
已知直线l交抛物线C:y2=2px(p>0)于A,B两点,且∠AOB=90°,其中,点O为坐标原点,点A的坐标为(1,2).
(I)求抛物线C的方程;
(II)求点B的坐标.
答案
(I)因为点A(1,2)在抛物线y2=2px上,
所以22=2p,-------------(2分)
解得p=2,-------------(3分)
故抛物线C的方程为y2=4x.-------------(4分)
(II)设点B的坐标为(x0,y0),由题意可知x0≠0,
直线OA的斜率kOA=2,直线OB的斜率kOB=
,y0 x0
因为∠AOB=90°,所以kOA•kOB=
=-1,-------------(6分)2y0 x0
又因为点B(x0,y0)在抛物线y2=4x上,
所以y02=4x0,-------------(7分)
联立
解得
=4x0y 20 2y0=-x0
或 x0=16 y0=-8
(舍),-------------(9分)x0=0 y0=0
所以点B的坐标为(16,-8).-------------(10分)