问题
解答题
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{an}、{bn}的通项公式; (Ⅱ)求数列{
|
答案
(Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且1+2d+q4=21 1+4d+q2=13
解得d=2,q=2.
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(Ⅱ)
=an bn
.Sn=1+2n-1 2n-1
+3 21
++5 22
+2n-3 2n-2
,①2Sn=2+3+2n-1 2n-1
++5 2
+2n-3 2n-3
,②2n-1 2n-2
②-①得Sn=2+2+
+2 2
++2 22
-2 2n-2
,=2+2×(1+2n-1 2n-1
+1 2
++1 22
)-1 2n-2
=2+2×2n-1 2n-1
-1- 1 2n-1 1- 1 2
=6-2n-1 2n-1
.2n+3 2n-1