问题
解答题
等差数列{an}中,a3=7,a1+a2+a3=12,令bn=anan+1,数列{
(1)求数列{an}的通项公式. (2)求证:Tn<
|
答案
(1)设数列{an}的公差为d,
∵a3=7,a1+a2+a3=12
∴a1+2d=7 3a1+3d=12
解得a1=1 d=3
∴数列{an}的通项公式为:an=3n-2(n∈N*)
(2)∵bn=anan-1,
∴bn=(3n-2)(3n+1)
∴
=1 bn
(1 3
-1 3n-2
)1 3n+1
∴数列{
}的前n项和1 bn
Tn=
[1-1 3
+1 4
-1 4
+1 7
-1 7
++1 11
-1 3n-5
+1 3n-2
-1 3n-2
]1 3n+1
=
(1-1 3
)1 3n+1
<1 3