问题
解答题
已知数列{an}的首项为2,点(an,an+1)在函数y=x+2的图象上 (1)求数列{an}的通项公式; (2)设数列{an}的前n项之和为Sn,求证
|
答案
(1)点(an,an+1)在函数y=x+2的图象上,∴an+1=an+2,
∴数列{an}是以首项为2公差为2的等差数列,
∴an=2+2(n-1)=2n;
(2)sn=
=n(n+1),(2n+2)n 2
则
=1 sn
=1 n(n+1)
-1 n
,1 n+1
∴
+1 S1
+1 S2
+…+1 S3
=(1-1 Sn
)+(1 2
-1 2
)+…+(1 3
-1 n
)=1-1 n+1
<11 n+1