问题
解答题
已知函数f(x)=x2-2x+4,数列{an}是公差为d的等差数列,若a1=f(d-1),a3=f(d+1) (1)求数列{an}的通项公式; (2)Sn为{an}的前n项和,求证:
|
答案
(1)a1=f(d-1)=d2-4d+7,a3=f(d+1)=d2+3,
又由a3=a1+2d,可得d=2,所以a1=3,an=2n+1
(2)证明:由题意,Sn=
=n(n+2),n(3+2n+1) 2
所以,
=1 Sn
=1 n(n+2)
(1 2
-1 n
)1 n+2
所以,
+1 S1
+…+1 S2
=1 Sn
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n
)1 n+2
=
(1 2
-3 2
-1 n+1
)≥1 n+2
(1 2
-3 2
-1 1+1
)=1 1+2 1 3