问题 解答题
已知函数f(x)=x2-2x+4,数列{an}是公差为d的等差数列,若a1=f(d-1),a3=f(d+1)
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,求证:
1
S1
+
1
S2
+…+
1
Sn
1
3
答案

(1)a1=f(d-1)=d2-4d+7,a3=f(d+1)=d2+3,

又由a3=a1+2d,可得d=2,所以a1=3,an=2n+1

(2)证明:由题意,Sn=

n(3+2n+1)
2
=n(n+2),

所以,

1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

所以,

1
S1
+
1
S2
+…+
1
Sn
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=

1
2
(
3
2
-
1
n+1
-
1
n+2
)≥
1
2
(
3
2
-
1
1+1
-
1
1+2
)
=
1
3

选择题
单项选择题