问题
解答题
已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+
(1)求数列{an}的通项公式; (2)求证:数列{bn}是等比数列; (3)记cn=an•bn,求{cn}的前n项和Sn. |
答案
(1)设an的公差为d,则:a2=a1+d,a5=a1+4d,
∵a2=6,a5=18,∴
,∴a1=2,d=4.a1+d=6 a1+4d=18
∴an=2+4(n-1)=4n-2.
(2)当n=1时,b1=T1,由T1+
b1=1,得b1=1 2
.2 3
当n≥2时,∵Tn=1-
bn,Tn-1=1-1 2
bn-1,1 2
∴Tn-Tn-1=
(bn-1-bn),即bn=1 2
(bn-1-bn)1 2
∴bn=
bn-1.1 3
bn是以
为首项,2 3
为公比的等比数列.1 3
(3)由(2)可知:bn=
•(2 3
)n-1=2•(1 3
)n.1 3
∴cn=an•bn=(4n-2)•2•(
) n=(8n-4)•(1 3
)n.1 3
Sn=c1+c2+…cn-1+cn=4×
+12×(1 3
)2+…+(8n-12)×(1 3
)n-1+(8n-4)×(1 3
)n1 3
∴.
Sn=4×(1 3
)2+12×(1 3
)3+…+(8n-12)×(1 3
)n+(8n-4)×(1 3
)n+11 3
∴Sn-
Sn=1 3
Sn=4×2 3
+8×(1 3
)2+8×(1 3
)3+…+8×(1 3
)n-(8n-4)×(1 3
)n+11 3
=
+8×4 3
-(8n-4)×((
)2•[1-(1 3
)n-1]1 3 1- 1 3
)n+11 3
=
-4×(8 3
)n-(8n-4)×(1 3
)n+11 3
∴Sn=4-4(n+1)•(
)n1 3