问题
解答题
已知公差不为0的等差数列{an}的首项a1=2,且a1,a2,a4成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{an}的前n项和为Sn,求数列{
|
答案
(Ⅰ)设等差数列{an}的公差为d(d≠0),
由题意得a22=a1a4,即(a1+d)2=a1(a1+3d),
∴(2+d)2=2(2+3d),解得 d=2,或d=0(舍),
∴an=a1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得Sn=na1+
d=2n+n(n-1)=n2+n,n(n-1) 2
∴
=1 Sn
=1 n2+n
=1 n(n+1)
-1 n
.1 n+1
则Tn=
+1 S1
+…+1 S2 1 Sn
=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)1 n+1
=1-
=1 n+1
,n n+1
所以数列{
}的前n项和Tn=1 Sn
.n n+1