问题
解答题
已知等差数列{an}是递增数列,且满足a4•a7=15,a3+a8=8. (1)求数列{an}的通项公式; (2)令bn=
|
答案
(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2-8x+15=0的两根,且a4<a7
解得a4=3,a7=5,设数列{an}的公差为d
由a7=a4+(7-4)•d,得d=
.2 3
故等差数列{an}的通项公式为:an=a4+(n-4)•d=3+(n-4)•
=2 3 2n+1 3
(2)bn=
=1 9an-1an
=1 9(
n-2 3
)(1 3
n+2 3
)1 3
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
又b1=
=1 3
(1-1 2
)1 3
∴Sn=b1+b2++bn=
(1-1 2
+1 3
-1 3
++1 5
-1 2n-1
)=1 2n+1
(1-1 2
)=1 2n+1 n 2n+1