问题 解答题
已知等差数列{an}是递增数列,且满足a4•a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令bn=
1
9an-1an
(n≥2),b1=
1
3
,求数列{bn}的前n项和Sn
答案

(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2-8x+15=0的两根,且a4<a7

解得a4=3,a7=5,设数列{an}的公差为d

a7=a4+(7-4)•d,得d=

2
3
.

故等差数列{an}的通项公式为:an=a4+(n-4)•d=3+(n-4)•

2
3
=
2n+1
3

(2)bn=

1
9an-1an
=
1
9(
2
3
n-
1
3
)(
2
3
n+
1
3
)
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

b1=

1
3
=
1
2
(1-
1
3
)

Sn=b1+b2++bn=

1
2
(1-
1
3
+
1
3
-
1
5
++
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1

问答题 简答题
单项选择题