问题 解答题
等差数列{an}中,a2=4,S6=42.
(1)求数列的通项公式an
(2)设bn=
2
(n+1)an
,Tn=b1+b2+…+bn,求T6
答案

(1)设数列等差数列{an}的公差为d,

由题意得

a1+d=4
6a1+
6×5
2
d=42
a1=2
d=2
an=2+(n-1)2=2n;

(2)将an=2n代入得:bn=

2
(n+1)2n
=
1
n(n+1)
=
1
n
-
1
n+1

则T6=b1+b2+b3+…+b6

=(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
6
-
1
7
)

=1-

1
7

=

6
7

填空题
单项选择题 共用题干题