问题
解答题
已知数列{an}的前n项和为Sn,且Sn=2an-2,(n=1,2,3,…);数列{bn}中,b1=1 点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{an•bn}的前n和为Tn.
答案
(1)当n=1时,a1=S1=2a1-2,解得a1=2.
当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),
化为an=2an-1,
∴数列{an}是以2为首项,2为公比的等比数列.
∴an=2n.
∵点P(bn,bn+1)在直线x-y+2上,∴bn-bn+1+2=0,
∴bn+1-bn=2,
∴数列{bn}是以b1=1为首项,2为公差的等差数列.
∴bn=1+(n-1)×2=2n-1.
(2)由(1)可得:anbn=(2n-1)•2n.
∴Tn=1×2+3×22+…+(2n-1)•2n,
2Tn=1×22+3×23+…+(2n-3)•2n+(2n-1)•2n+1,
∴-Tn=1×2+2×22+2×23+…+2×2n-(2n-1)•2n+1
=2×(2+22+…+2n)-2-(2n-1)•2n+1
=2×
-2-(2n-1)•2n+12(2n-1) 2-1
=2n+2-6-(2n-1)•2n+1
=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.