问题
解答题
对于任意定义在R上的函数f(x),若存在x0∈R满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若函数f(x)=x2+ax+1没有不动点,则实数a的取值范围是______.
答案
根据题意,得x=x2+ax+1无实数根,
即x2+(a-1)x+1=0无实数根,
∴△=(a-1)2-4<0,
解得:-1<a<3;
故答案为:(-1,3)
对于任意定义在R上的函数f(x),若存在x0∈R满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若函数f(x)=x2+ax+1没有不动点,则实数a的取值范围是______.
根据题意,得x=x2+ax+1无实数根,
即x2+(a-1)x+1=0无实数根,
∴△=(a-1)2-4<0,
解得:-1<a<3;
故答案为:(-1,3)