问题
解答题
已知a1=1数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0 (1)求an ( 2 )令bn=
|
答案
(1)∵nSn+1-(n+3)Sn=0,即nan+1=3Sn①
∴(n-1)an=3Sn-1(n≥2)②
①-②得nan+1=(n+2)an(n≥2)
∴an=
×n+1 n-1
×n n-2
×…×n-1 n-3
×6 4
×5 3
×4 2 3 1
=
(n≥2),n(n+1) 2
a1=1也适合上式,
∴an=
(n∈N*).n(n+1) 2
(2)bn=
=1 an
=2(2 n(n+1)
-1 n
),1 n+1
∴Tn=2(1-
+1 2
-1 2
+…+1 3
-1 n
)1 n+1
=
.2n n+1