问题 解答题
已知a1=1数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0
(1)求an
( 2 )bn=
1
an
,求{bn}的前n项和Tn
答案

(1)∵nSn+1-(n+3)Sn=0,即nan+1=3Sn

∴(n-1)an=3Sn-1(n≥2)②

①-②得nan+1=(n+2)an(n≥2)

∴an=

n+1
n-1
×
n
n-2
×
n-1
n-3
×…×
6
4
×
5
3
×
4
2
×
3
1

=

n(n+1)
2
(n≥2),

a1=1也适合上式,

∴an=

n(n+1)
2
(n∈N*).

(2)bn=

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),

∴Tn=2(1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=

2n
n+1

选择题
单项选择题