设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列. (1)求数列{an}和{bn}的通项公式; (2)是否存在k∈N+,使ak-bk∈(0,
|
(1)由已知a2-a1=-2,a3-a2=-1
得公差d=-1-(-2)=1
所以an+1-an=(a2-a1)+(n-1)×1=n-3
故an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=6+(-2)+(-1)+0+…+(n-4)
=6+[(-2)+(n-4)](n-1) 2
=n2-7n+18 2
由已知b1-2=4,b2-2=2所以公比q=1 2
所以bn-2=(b1-2)(
)n-1=4×(1 2
)n-1.1 2
故bn=2+8×(
)n1 2
(2)设f(k)=ak-bk=(
k2-1 2
k+9)-[2+8×(7 2
)k]1 2
=
[(k-1 2
)2-7 2
]-8×(49 4
)k+71 2
所以当k≥4时,f(k)是增函数.
又f(4)=
,所以当k≥4时f(k)≥1 2
,1 2
而f(1)=f(2)=f(3)=0,所以不存在k,使f(k)∈(0,
).1 2