问题
解答题
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
(1)求an与bn; (2)证明:
|
答案
(1)由已知等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
.S2 b2
∴q+3+a2=12,q=3+a2 q
∴q=3或q=-4(舍去),∴a2=6
∴an=3+(n-1)3=3n,bn=3n-1;
(2)证明:∵Sn=
,∴n(3+3n) 2
=1 Sn
=2 n(3+3n)
(2 3
-1 n
)1 n+1
∴
+1 S1
+…+1 S2
=1 Sn
(1-2 3
+1 2
-1 2
…+1 3
-1 n
)=1 n+1
(1-2 3
)1 n+1
∵n≥1,∴0<
≤1 n+1 1 2
∴
≤1 3
(1-2 3
)<1 n+1 2 3
∴
≤1 3
+1 S1
+…+1 S2
<1 Sn
.2 3