问题 解答题
函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(
1
3
)>1.
(1)求f(0)的值;
(2)求证:f(x)在R上是单调增函数;
(3)若a>b>c>0且b2=ac,求证:f(a)+f(c)>2f(b).
答案

(1)∵对任意x∈R,有f(x)>0,

∴令x=0,y=2得:f(0)=[f(0)]2⇒f(0)=1;

(2)任取x1,x2∈R,且x1<x2,则x1=

1
3
p1x2=
1
3
p2
,故p1<p2

∵函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(

1
3
)>1.

∴f(x1)-f(x2)=f(

1
3
p1)-f(
1
3
p2
)=[f(
1
3
)]
p1
-[f(
1
3
)]
p2
<0,

∴f(x1)<f(x2),

∴函数f(x)是R上的单调增函数.

(3)由(1)(2)知,f(b)>f(0)=1,

∴f(b)>1,

∵f(a)=f(b•

a
b
)=[f(b)]
a
b
,f(c)=f(b•
c
b
)=[f(b)]
c
b

∴f(a)+f(c)=[f(b)]

a
b
+[f(b)]
c
b
>2
[f(b)]
c+a
b

而a+c>2

ac
=2
b2
=2b,

∴2

[f(b)]
c+a
b
>2
[f(b)]
2b
b
=2f(b),

∴f(a)+f(c)>2f(b).

选择题
判断题