问题
解答题
已知数列{an}的每一项都是正数,满足a1=2,且an+12-anan+1-2an2=0;等差数列{bn}的前n项和为Tn,b2=3,T5=25. (1)求数列{an}、{bn}的通项公式; (2)比较
(3)若
|
答案
(1)an+12-anan+1-2an2=0
得(an+1-2an)(an+1+an)=0,
由于数列{an}的每一项都是正数,∴an+1=2an,∴an=2n.
设bn=b1+(n-1)d,由已知有b1+d=3,5b1+
d=25,5×4 2
解得b1=1,d=2,∴bn=2n-1.
(2)由(1)得Tn=n2,∴
=1 Tn
,1 n2
当n=1时,
=1<2.1 T1
当n≥2时,
<1 n2
=1 (n-1)n
-1 n-1
.1 n
∴
+1 T1
+…+1 T2
<1+1 Tn
-1 1
+1 2
-1 2
++1 3
-1 n-1
=2-1 n
<2.1 n
(3)记Pn=
+b1 a1
+…+b2 a2
=bn an
+1 2
+3 22
+…+5 23
.2n-1 2n
∴
Pn=1 2
+1 22
++3 23
+2n-3 2n
,2n-1 2n+1
两式相减得Pn=3-
.2n+3 2n
∵Pn递增,∴
≤Pn<3,P4=1 2
>2,37 16
∴最小的整数c=3.