问题
解答题
已知数列{an}中,an-an-1=-2,a1=20.
(1)求数列{an}的通项公式an及前n项和Sn;
(2)求使Sn最大的序号n的值;
(3)求数列{|an|}的前n项和Tn.
答案
(1)∵an-an-1=-2,a1=20,∴数列{an}是以20为首项,-2为公差的等差数列,
∴an=20-2(n-1)=-2n+22,Sn=20n-n(n-1)=21n-n2.
(2)令an=0,-2n+22=0,n=11,
∴当n=10或n=11时,使Sn最大.
(3)①n≤11(n∈N+)时,Tn=Sn=21n-n2,
②n>11(n∈N+)时,a12=-2×12+22=-2,S11=S10=21×10-102=110,
Tn=S11-(Sn-S11)=2S11-Sn=220-21n+n2,
Tn=
.21n-n2 (n≤11,n∈N+) n2-21n+220 (n>11,n∈N+)