问题
解答题
设正数数列{an}的前n项和Sn满足Sn=
(I)求数列{an}的通项公式; (II)设bn=
|
答案
(Ⅰ)当n=1时,a1=S1=
(a1+1)2,1 4
∴a1=1.(2分)
∵Sn=
(an+1)2,①1 4
∴Sn-1=
(an-1+1)2(n≥2).②1 4
①-②,得an=Sn-Sn-1=
(an+1)2-1 4
(an-1+1)2,1 4
整理得,(an+an-1)(an-an-1-2)=0,(5分)
∵an>0
∴an+an-1>0.
∴an-an-1-2=0,即an-an-1=2(n≥2).(7分)
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.(9分)
(Ⅱ)∵bn=
=1 an•an+1
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
),(11分)1 2n+1
∴Tn=b1+b2+bn=
(1-1 2
)+1 3
(1 2
-1 3
)++1 5
(1 2
-1 2n-1
)=1 2n+1
(1-1 2
)=1 2n+1
. (14分)n 2n+1