问题 解答题
设正数数列{an}的前n项和Sn满足Sn=
1
4
(an+1)2

(I)求数列{an}的通项公式;
(II)设bn=
1
anan+1
,求数列{bn}的前n项和Tn
答案

(Ⅰ)当n=1时,a1=S1=

1
4
(a1+1)2

∴a1=1.(2分)

Sn=

1
4
(an+1)2,①

Sn-1=

1
4
(an-1+1)2(n≥2).②

①-②,得an=Sn-Sn-1=

1
4
(an+1)2-
1
4
(an-1+1)2

整理得,(an+an-1)(an-an-1-2)=0,(5分)

∵an>0

∴an+an-1>0.

∴an-an-1-2=0,即an-an-1=2(n≥2).(7分)

故数列{an}是首项为1,公差为2的等差数列.

∴an=2n-1.(9分)

(Ⅱ)∵bn=

1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
),(11分)

∴Tn=b1+b2+bn=

1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)++
1
2
(
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)
=
n
2n+1
. (14分)

单项选择题
单项选择题