已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,求Tn.
(1)由Sn=2an-2得:Sn-1=2an-1-2(n≥2),
两式相减得:an=2an-2an-1,即
=2(n≥2),an an-1
又a1=2a1-2,
∴a1=2,
∴数列{an}是以2为首项,2为公比的等比数列,
∴an=2n.
∵点P(bn,bn+1)在直线x-y+2=0上,
∴bn+1-bn=2,
∴数列{bn}是等差数列,
∵b1=1,
∴bn=2n-1;
(2)Tn=1×2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n①
∴2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1②
①-②得:-Tn=1×2+2(22+23+…+2n)-(2n-1)×2n+1
=2+2×
-(2n-1)×2n+14(1-2n-1) 1-2
=2+2×2n+1-8-(2n-1)×2n+1
=(3-2n)2n+1-6,
∴Tn=(2n-3)2n+1+6.