问题 解答题

已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.

(1)求数列{an},{bn}的通项公式;

(2)记Tn=a1b1+a2b2+…+anbn,求Tn

答案

(1)由Sn=2an-2得:Sn-1=2an-1-2(n≥2),

两式相减得:an=2an-2an-1,即

an
an-1
=2(n≥2),

又a1=2a1-2,

∴a1=2,

∴数列{an}是以2为首项,2为公比的等比数列,

∴an=2n

∵点P(bn,bn+1)在直线x-y+2=0上,

∴bn+1-bn=2,

∴数列{bn}是等差数列,

∵b1=1,

∴bn=2n-1;

(2)Tn=1×2+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n

∴2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1

①-②得:-Tn=1×2+2(22+23+…+2n)-(2n-1)×2n+1

=2+2×

4(1-2n-1)
1-2
-(2n-1)×2n+1

=2+2×2n+1-8-(2n-1)×2n+1

=(3-2n)2n+1-6,

∴Tn=(2n-3)2n+1+6.

读图填空题
问答题 简答题