问题 填空题

设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a2n+1=b2n+1,则______.

答案

因为等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a2n+1=b2n+1

所以an+1-bn+1=

a1+a2n+1
2
-
b1b2n+1

=

a1+a2n+1-2
a1a2n+1
2

=

(
a1
-
a2n+1
) 2
2
≥0.

即 an+1≥bn+1

故答案为:an+1≥bn+1

问答题
单项选择题