问题
填空题
设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a2n+1=b2n+1,则______.
答案
因为等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a2n+1=b2n+1,
所以an+1-bn+1=
-a1+a2n+1 2 b1•b2n+1
=a1+a2n+1-2 a1•a2n+1 2
=
≥0.(
-a1
) 2a2n+1 2
即 an+1≥bn+1.
故答案为:an+1≥bn+1.