问题
解答题
已知数列{an}满足an+2+an=2an+1(n∈N+),且a3+a5=14,a4+a6=18 (1)求数列{an}的通项公式an; (2)令bn=an(
|
答案
(1)∵数列{an}满足an+2+an=2an+1(n∈N+),
∴数列{an}是等差数列,
∵a3+a5=14,a4+a6=18,
∴
,a1+2d+a1+4d=14 a1+3d+a1+5d=18
解得a1=1,d=2,
∴an=2n-1.
(2)∵an=2n-1,
∴bn=an(
)n=(2n-1)•(1 2
)n,1 2
∴数列{bn}的前n项和
Sn=1×
+3×(1 2
)2+5×(1 2
)3+…+(2n-1)×(1 2
)n,①1 2
∴
Sn=1×(1 2
)2+3×(1 2
)3+5×(1 2
)4+…+(2n-1)×(1 2
)n+1,②1 2
①-②,得
Sn=1 2
+2×(1 2
)2+2×(1 2
)3+2×(1 2
)4+…+2×(1 2
)n-(2n-1)×(1 2
)n+11 2
=
+2×[(1 2
)2+(1 2
)3+(1 2
)4+…+(1 2
)n]-(2n-1)×(1 2
)n+11 2
=
+2×1 2
-(2n-1)×(
[1-(1 4
)n-1]1 2 1- 1 2
)n+11 2
=
+1-(1 2
)n-1-(2n-1)×(1 2
)n+1,1 2
∴Sn=3-(
)n-2-(2n-1)(1 2
)n.1 2