问题 解答题
已知数列{an}满足an+2+an=2an+1(n∈N+),且a3+a5=14,a4+a6=18
(1)求数列{an}的通项公式an
(2)令bn=an
1
2
n,求数列{bn}的前n项和Sn
答案

(1)∵数列{an}满足an+2+an=2an+1(n∈N+),

∴数列{an}是等差数列,

∵a3+a5=14,a4+a6=18,

a1+2d+a1+4d=14
a1+3d+a1+5d=18

解得a1=1,d=2,

∴an=2n-1.

(2)∵an=2n-1,

∴bn=an

1
2
n=(2n-1)•(
1
2
n

∴数列{bn}的前n项和

Sn=1×

1
2
+3×(
1
2
2+5×(
1
2
3+…+(2n-1)×(
1
2
n,①

1
2
Sn=1×(
1
2
2+3×(
1
2
3+5×(
1
2
4+…+(2n-1)×(
1
2
n+1,②

①-②,得

1
2
Sn=
1
2
+2×(
1
2
2+2×(
1
2
3+2×(
1
2
4+…+2×(
1
2
n-(2n-1)×(
1
2
n+1

=

1
2
+2×[(
1
2
2+(
1
2
3+(
1
2
4+…+(
1
2
n]-(2n-1)×(
1
2
n+1

=

1
2
+2×
1
4
[1-(
1
2
)n-1]
1-
1
2
-(2n-1)×(
1
2
n+1

=

1
2
+1-(
1
2
n-1-(2n-1)×(
1
2
n+1

Sn=3-(

1
2
)n-2-(2n-1)(
1
2
)n

单项选择题
填空题