若函数f(x)对任意的x∈R,均有f(x-1)+f(x+1)≥2f(x),则称函数f(x)具有性质P.
(Ⅰ)判断下面两个函数是否具有性质P,并说明理由.
①y=ax(a>1); ②y=x3.
(Ⅱ)若函数f(x)具有性质P,且f(0)=f(n)=0(n>2,n∈N*),
求证:对任意i∈{1,2,3,…,n-1}有f(i)≤0;
(Ⅲ)在(Ⅱ)的条件下,是否对任意x∈[0,n]均有f(x)≤0.若成立给出证明,若不成立给出反例.
证明:(Ⅰ)①函数f(x)=ax(a>1)具有性质P.…(1分)
f(x-1)+f(x+1)-2f(x)=ax-1+ax+1-2ax=ax(
+a-2),1 a
因为a>1,ax(
+a-2)>0,…(3分)1 a
即f(x-1)+f(x+1)≥2f(x),
此函数为具有性质P.
②函数f(x)=x3不具有性质P.…(4分)
例如,当x=-1时,f(x-1)+f(x+1)=f(-2)+f(0)=-8,2f(x)=-2,…(5分)
所以,f(-2)+f(0)<f(-1),
此函数不具有性质P.
(Ⅱ)假设f(i)为f(1),f(2),…,f(n-1)中第一个大于0的值,…(6分)
则f(i)-f(i-1)>0,
因为函数f(x)具有性质P,
所以,对于任意n∈N*,均有f(n+1)-f(n)≥f(n)-f(n-1),
所以f(n)-f(n-1)≥f(n-1)-f(n-2)≥…≥f(i)-f(i-1)>0,
所以f(n)=[f(n)-f(n-1)]+…+[f(i+1)-f(i)]+f(i)>0,
与f(n)=0矛盾,
所以,对任意的i∈{1,2,3,…,n-1}有f(i)≤0.…(9分)
(Ⅲ)不成立.
例如f(x)=
…(10分)x(x-n)x为有理数 x2 x为无理数.
证明:当x为有理数时,x-1,x+1均为有理数,f(x-1)+f(x+1)-2f(x)=(x-1)2+(x+1)2-2x2-n(x-1+x+1-2x)=2,
当x为无理数时,x-1,x+1均为无理数,f(x-1)+f(x+1)-2f(x)=(x-1)2+(x+1)2-2x2=2
所以,函数f(x)对任意的x∈R,均有f(x-1)+f(x+1)≥2f(x),
即函数f(x)具有性质P.…(12分)
而当x∈[0,n](n>2)且当x为无理数时,f(x)>0.
所以,在(Ⅱ)的条件下,“对任意x∈[0,n]均有f(x)≤0”不成立.…(13分)
(其他反例仿此给分.
如f(x)=
,f(x)=0 (x为有理数) 1 (x为无理数)
,f(x)=0 (x为整数) 1 (x为非整数)
,等.)0 (x为整数) x2 (x为非整数)