甲车以10m/s的速度在平直的公路上匀速行驶,乙车以4m/s的速度与甲车平行同向做匀速直线运动,甲车经过乙车旁边开始以0.5m/s2的加速度刹车,从甲车刹车开始计时,求:
(1)乙车在追上甲车前,两车相距的最大距离;
(2)乙车追上甲车所用的时间.
(1)在乙车追上甲车之前,当两车速度相等时两车间的距离最大,
设此时经历的时间为t1,则
由 v1=v2+at1
得:t1=12s
此时甲车的位移为:x1=v2t1+
at12=10×12-1 2
×0.5×122m=84m1 2
乙车的位移为:x2=v1t1=4×12m=48m
所以两车间的最大距离为:
△x=x2-x1=84-48m=36m
(2)设甲车停止的时间为t2,则有t2=
=v a
s=20s,10 0.5
甲车在这段时间内发生的位移为:x=
=v2 2a
m=100m0-102 -2×0.5
乙车发生的位移为x′=v′t2=4×20m=80m
则 乙车追上甲车所用的时间t3=t2+
s=25s 100-80 4
答:
(1)乙车在追上甲车前,两车相距的最大距离36m;
(2)乙车追上甲车所用的时间25s.